Synthesis of Some Novel 2,3-diaryl-Butadiene Analogues

Jun Biao CHANG ${ }^{1}$, Juan HE 1, Rong Feng CHEN ${ }^{1}$, Jing Xi XIE ${ }^{2}$
${ }^{1}$ Henan Institute of Chemistry, Henan Academy of Science, Zhengzhou 450002
${ }^{2}$ Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract

In present paper, the 2,3-diaryl-butadiene analogues were synthesized as anti-cancer agents. The structures were confirmed by ${ }^{1}$ HNMR and elemental analysis.

Keywords: 2,3-Dibenzyl-2-butene, coupling reaction, carbonyl compounds.

The reductive coupling of carbonyl compounds is an important method of carbon-carbon bond formation. The reaction can be used in both an inter-and intramolecular manner. It is important for the formation of olefins. Mukaiyama T., et al reported that the reductive coupling of ketones with $\mathrm{TiCl}_{4} / \mathrm{Zn}$ in tetrahydrofuran (THF) afforded the corresponding pinacols or olefins in high yields. The pinacols were obtained at $0^{\circ} \mathrm{C}$. After heating, the deoxygenation reaction of pinacols afforded olefins ${ }^{2}$. In the present paper, we report the reductive couplings of phenylacetones ($\mathbf{3 a - 3 e}$) with $\mathrm{TiCl}_{4} / \mathrm{Zn}$ to afford the corresponding pinacoles when the coupling reaction was carried out at $0^{\circ} \mathrm{C}$ or at reflux temperature. The control factors of stereochemistry of the products are not clear. However, we have found that olefins were obtained by treatment of the pinacols with ethyl orthoformate.

2,3-Diaryl-butadiene was isolated from the stem of Anogeissus acuminata(Roxb. ex DC) Guill. and Perr. var. Lanceolate wall ex CB Clarke. This kind of compounds showed cytotoxicity for various cancer cell lines and some of them also showed inhibitory activity against HIV-1 reverse transcriptase ${ }^{3-6}$ in vitro. For search new anti-cancer agents, we synthesized the analogs of 2,3-diaryl-butadiene for bioscreening. The compound 3a~3e were used as starting materials (Scheme 1).
$\mathbf{3 a} \sim \mathbf{3 e}$ were synthesized by reduction and hydrolysis with $\mathrm{Fe}-\mathrm{FeCl}_{3} /$ conc. HCl of the nitrostyrenes $\mathbf{2 a \sim} \mathbf{2 e}$, which were prepared from the corresponding benzaldehydes in high yields. The threo erythro mixtures of 2,3-diaryl-2-butanediols $\mathbf{4 a \sim 4 e}$ were obtained by reductive couplings of the $\mathbf{3 a} \sim \mathbf{3 e}$ with $\mathrm{TiCl}_{4}-\mathrm{Zn}$ in tetrahydrofuran (THF). Treatment of the compounds $\mathbf{4 a} \mathbf{4 e}$ with ethyl orthoformate in the presence of benzoic acid afforded the corresponding (E) and (Z)-butenes ${ }^{7}$ in a ratio of $1: 1$, yield $>90 \%$. The E and Z isomers could be separated easily by simple recrystallization from ethyl alcohol. We deduced the mechanism of this reaction as shown in Scheme 2. Thus, deoxygenations of cis- and trans-butanediols occured at approximately the same rate.

Scheme 1

a: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}$
b: $\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{OCH}_{2} \mathrm{O}, \mathrm{R}_{3}=\mathrm{OCH}_{3}$
c: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$
$\mathrm{d}: \mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{OCH}_{2} \mathrm{O}, \mathrm{R}_{3}=\mathrm{H}$
e: $R_{1}=R_{3}=O C H_{3}, R_{2}=H$

The physical properties and ${ }^{1} \mathrm{HNMR}$ data of compounds $\mathbf{5 a} \sim \mathbf{5 e}$ are shown in Table 1 and Table 2.

Table 1 The Physical Properties of compounds 5a~5e

Compound	Color and state	$\mathrm{mp}{ }^{\circ} \mathrm{C}$
$\mathbf{5 a}(\mathbf{E})$	Colorless crystals	$121-122$
$\mathbf{5 a}(\mathbf{Z})$	Yellowish oil	
$\mathbf{5 b}(\mathbf{E})$	Colorless crystals	$115-116$
$\mathbf{5 b}(\mathbf{Z})$	Yellowish oil	
$\mathbf{5 c}(\mathbf{E})$	Colorless crystals	$76-78$
$\mathbf{5 c}(\mathbf{Z})$	Yellowish oil	$118-119$
$\mathbf{5 d}(\mathbf{E})$	Colorless crystals	
$\mathbf{5 d}(\mathbf{Z})$	Yellowish oil	$68-69$
$\mathbf{5 e}(\mathbf{E})$	Colorless crystals	
$\mathbf{5 e}(\mathbf{Z})$	Yellowish oil	

Scheme 2

Table 2 The ${ }^{1} \mathrm{HNMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ data and elemental analysis of compounds $\mathbf{5 a \sim 5}$

		${ }^{1} \mathrm{HNMR}(\delta)$				Anal. Calcd.				Found	
	ArH	$\mathrm{OCH}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{O}$	CH_{2}	CH_{3}	C	H	C	H		
$\mathbf{5 a}(\mathbf{E})$	6.49 s			3.86 s	3.41 m	1.63 s	69.20	7.74	69.15	7.50	
$\mathbf{5 a}(\mathbf{Z})$	6.60 s		3.88 s	3.49 m	1.70 s	69.20	7.74	69.08	7.65		
$\mathbf{5 b}(\mathbf{E})$	6.33 d	5.92 s	3.87 s	3.41 m	1.68 s	68.73	6.29	68.70	6.33		
$\mathbf{5 b}(\mathbf{Z})$	6.34 m	5.92 s	3.88 s	3.40 d	1.72 s	68.73	6.29	68.98	6.30		
$\mathbf{5 c}(\mathbf{E})$	6.76 m		$3.85 \mathrm{~s}, 3.83 \mathrm{~s}$	3.45 d	1.75 s	74.13	7.92	74.13	7.88		
$\mathbf{5 c}(\mathbf{Z})$	6.68 m			$3.86 \mathrm{~s}, 3.84 \mathrm{~s}$	3.48 d	1.68 s	74.13	7.92	74.09	7.90	
$\mathbf{5 d}(\mathbf{E})$	6.65 m	5.91 s			3.37 s	1.72 s	74.07	6.17	74.03	6.15	
$\mathbf{5 d}(\mathbf{Z})$	6.64 m	5.92 s		3.44 s	1.69 s	74.07	6.17	74.05	6.13		
$\mathbf{5 e}(\mathbf{E})$	$7.02 \mathrm{~s}, 6.92 \mathrm{~s}, 6.44 \mathrm{~m}$		$3.82 \mathrm{~s}, 3.78 \mathrm{~s}$	3.38 s	1.68 s	74.13	7.92	74.08	7.90		
$\mathbf{5 e}(\mathbf{Z})$	$7.03 \mathrm{~s}, 6.92 \mathrm{~s}, 6.44 \mathrm{~m}$		3.80 s	3.39 d	1.69 s	74.13	7.92	74.10	7.89		

The biological evaluations of these compounds were summarized in Table 3.
Table 3 The anti-cancer biological evalutions of compounds $\mathbf{5 b}(E), 5 \mathrm{~b}(Z), \mathbf{5 c}(E), \mathbf{5 c}(Z), 5 \mathrm{e}(E)$ and $\mathbf{5 e}(Z)$

Compound	Cell model	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{ml})$	Results
	KB	<1	$7++$
$\mathbf{5 b}(\boldsymbol{E})$	HCT-8	<1	++
$\mathbf{5 b}(\mathbf{Z})$	Bel 7402	<1	++
	A 2780	<1	++
	L 1210	<1	++
	KB	<1	++
$\mathbf{5 c}(\boldsymbol{E})$	HCT-8	<1	++
	Bel 7402	<10	+
	A 2780	<1	++
	L 1210	<1	++
	KB	<10	+
	HCT-8	<1	++
	Bel 7402	<1	++
	A 2780	<1	++
	L 1210	KB	<1
	HCT-8	<1	++
	Bel 7402	(E)	A 2780

$\mathrm{IC}_{50}=$ concentration required to inhibit 50% "+"=weak activity; "++"=stronger activity of host cells.

References and Notes

1. T. Mukaiyama, T. Sato, J. Hanna, Chem. Lett., 1973, 1041.
2. J.E. McMurry, Chem. Rev., 1989, 89, 1513.
3. M. Rimando, J. M. Pezzuto, N, R. Farnsworth et al., $206^{\text {th }}$ ACS National Meeting, Division of Medicinal Chemistry, Chicago, IL, August 22-27, 1993, MEDI. 211
4. Y. Lee, Y. B. Han, W. S. Woo, et al., Saengyak Hakhoechi(Eng), 1990, 21(4), 270.
5. J. L. Belletire, D. F. Fry, S. L. Fremont, J. Nat. Prod., 1992, 55(2), 184.
6. C. C. Chen, W. C. Hsin, Y. L. Huang, J. Nat. Prod., 1998, 61(2), 227.
7. All key intermediates and final products in Scheme 1 gave the correct elemental analysis (\pm 0.4%)

Received June 12, 2000

